Developing V-Ray Next

Viadimir Koylazov
Total Chaos 2018

Overview

e Three stories of heroism, despair and (mostly) happy endings:
O Wrapping up the Embree integration and update to Embree 2.13;
o SIMD-ifying the V-Ray code;
o Adaptive dome light challenges.

Embree integration

e COiriginally we had our own intersection code:
Static (non-motion-blurred geometry)
Motion-blurred geometry

Instances/proxies

Hair

Particles

Displacement

e Embree was introduced gradually for different types of intersections
o Started with V-Ray 3.0 for static and single-segment motion blur
o Hair, instances, proxies added over the various 3.x releases

e Embree is generally 2x faster than our intersectors
o Translates to ~25% lower render times

O O O O O O

Embree integration in V-Ray Next

e Updated to Embree 2.13

o Mostly because of some additional hair features
o Quad intersections seemed something worth exploring

e Added multisegmented motion blur support
e Will work on reducing memory usage over the V-Ray Next dev cycle

Custom Embree modifications

e \We have a few custom Embree modifications
o Skip tags;
o Fat hair intersectors;
o Custom geometry layout for conserving memory

e \We had to keep our changes separate from the main Embree code

Embree fat hair intersector

Original Embree Our fat hair
hair intersector intersector

Embree fat hair intersector

Original intersector Fat intersector

Embree 2.13 - porting our custom changes

e When we compared the code for Embree 2.3 and Embree 2.13...
o ...the code was totally different and refactored;
o It was not immediately clear how to port our modifications to the new Embree code base

e Martin Krastev spent a whole year rebasing our changes on top of the
Embree 2.13 code...

o ..commit by commit
o Fixing any problems along the way.

e Unit tests were extremely important

Embree 2.13

L

SIMD-ifying the V-Ray code

e SSEZ2 instructions
o Provide efficient implementation of 4-component vector, color and matrix operations
o In limited tests showed measurable performance improvements

e Not available in 2000 when the V-Ray math library was first developed

e \ectors, colors and matrices are used throughout the V-Ray code
o Some of the code used double-precision calculations as well which are (much) slower

e How can this change be made?
o Inareasonable time frame;
o Without breaking anything.
e Staged implementation:
o First for the intersection code of rays with geometry primitives;
o Then for some vector shading elements (surface normals, intersection points);
o Finally, for colors and all members of the ray state

V-Ray code basic structure

Ultility libraries

V-Ray core

V-Ray for 3ds Max V-Ray Standalone V-Ray for Maya...

|

Plugins for V-Ray for 3ds Max

Plugins for V-Ray Standalone

SIMD-ifying the V-Ray code

e The goal was clear...
o ...butwhere to start?

e There are thousands of source files and vectors/colors/matrices are used in

thousands of places
o ~3500 .cpp files, ~5500 .h and .hpp files
o Together vector types occur on 46679 lines in 2787 files
e Not all occurrences need to be changed

o Storage of vector/color data in large arrays in memory needs to remain as non-SIMD types
m For RAM usage reasons
m For alignment reasons

o Some calculations are not performance-critical

“Show me your [code] and conceal your [data
structures], and | shall continue to be mystified.
Show me your [data structures], and | won't
usually need your [code]; it'll be obvious.”

- After Fred Brooks,
“The Mythical Man-Month”

SIMD-ifying the V-Ray code

e Start by modifying the key data structures used in the code

o Class Ray and TraceRay
o Class IntersectionData
o Class VRayContext

e First do vector math, then do colors
e Make sure that SIMD classes have the same interface as non-SIMD classes

o So that in most cases the change would be simply replacing the type of a variable/function
argument

o

vray/vray/include/vrayinterface.h: 70a04ba

925
926
927
928
929
930
931
932
933
934
935
936
937

923 /// Describes an intersection of a ray with a surface

vray/vray/include/vrayinterface.h: 73deag9

946 /// Describes an intersection of a ray with a surface

924 struct INEERSECEIONDSES |

947 struct IntersectionData {

/// The primitive that produced the intersection
GenericPrimitive *primitive;

/1/ A pointer to a shadeable object (makes no sense to be NULL, but may be)
Shadeable *sb;

/1/ A pointer to additional shading data
VRayShadeInstance *si;

/// A pointer to additional texture-mapping data
VRayShadeData *sd;

/// A pointer to a volume shader for the object
VRayVolume *volume;

/// A pointer to additional surface properties
VRaySurfaceProperties *surfaceProps;

void *skipTag; ///< A single render primitive to exclude while tracing the ray (for avoiding "surface acne"), may be
Ireal wpointCoeff; ///< The distance along the ray where the intersection occurred

/// The intersection point itself in internal space. In versions of the V-Ray SDK prior to 1.90.0@, this

/// point was directly in world space. In versions 1.90.8¢ and later, the actual world-space coordinates

/// can be obtained by adding VRayFrameData::sceneOffset to the wpoint.

wpoint;

normal; ///< The smooth normal at the surface point. In world coordinates, may be non-unit when passed to VRa
gnormal; ///< The geometric normal at the surface point. In world coordinates, may be non-unit when passed to

// The following members are set and used by VRay's shadeable objects to pass information to the ShadeData object
// You can use them for whatever reasons are necessary

int faceIndex; ///< Index of the intersected primitive, used to identify it to the Renderable and also for material
bary; ///< Barycentric coordinates of the intersection; handy for triangle meshes
faceBase, facetdgee, faceEdgel; ///< The intersected "face" in world coordinates, for texture filtering and b

// Some additional stuff for CA Scanline, to be removed later
Color atmosColor;
Color atmosTransp;

/// Additional stuff if needed
union {
int extrae;
float extraf;
void *extrap;
int extra_int[2];
b
/// Clears the IntersectionData to repsent an empty intersection
void clear(void) {

skipTag=NULL;
}

//7 @name Accessor methods - provide better compatibility between versions
117 @

VRayExport GenericPrimitive* getPrimitive(void) const;

VRayExport void setPrimitive(GenericPrimitive* primitive);

VRayExport Shadeable* getShadeable(void) const;
VRayExport void setShadeable(Shadeable *shadeable);

For Help, press F1. Scroll horizontally with Ctrl-Scrollwheel

948
949
9s5e
951
952
953
954
955
956
957

/// The primitive that produced the intersection
GenericPrimitive *primitive;

/// A pointer to a shadeable object (makes no sense to be NULL, but may be)
Shadeable *sb;

/// A pointer to additional shading data
VRayShadeInstance *si;

/// A pointer to additional texture-mapping data
VRayShadeData *sd;

/// A pointer to a volume shader for the object
VRayVolume *volume;

/// A pointer to additional surface properties
VRaySurfaceProperties *surfaceProps;

void *skipTag; ///< A single render primitive to exclude while tracing the ray (for avoiding "surface acne”), may be
Ireal wpointCoeff; ///< The distance along the ray where the intersection occurred

/// The intersection point itself in internal space. In versions of the V-Ray SDK prior to 1.90.0@, this
/// point was directly in world space. In versions 1.90.8@ and later, the actual world-space coordinates
/// can be obtained by adding VRayFrameData::sceneOffset to the wpoint.

ShadeVec wpoint;

ShadeVec normal; ///< The smooth normal at the surface point. In world coordinates, may be non-unit when passed to Vi
ShadeVec gnormal; ///< The geometric normal at the surface point. In world coordinates, may be non-unit when passed 1

// The following members are set and used by VRay's shadeable objects to pass information to the ShadeData object
// You can use them for whatever reasons are necessary

int faceIndex; ///< Index of the intersected primitive, used to identify it to the Renderable and also for material :
ShadeVec bary; ///< Barycentric coordinates of the intersection; handy for triangle meshes
ShadeVec faceBase, facetdge®, faceEdgel; ///< The intersected "face” in world coordinates, for texture filtering and

// Some additional stuff for CA Scanline, to be removed later
Color atmosColor;
Color atmosTransp;

/// Additional stuff if needed
union {
int extra@;
float extraf;
void *extrap;
int extra_int[2];
b
/// Clears the IntersectionData to repsent an empty intersection
void clear(void) {
primitive

surfaceProps=|
skipTag=NULL;
K

/// @name Accessor methods - provide better compatibility between versions
1171 &

VRayExport GenericPrimitive® getPrimitive(void) const;

VRayExport void setPrimitive(GenericPrimitive* primitive);

VRayExport Shadeable* getShadeable(void) const;
VRayExport void setShadeable(Shadeable *shadeable);

Left View: ASCIl v CRLF v Tab4 ~ -95 RightView: ASCIl v CRLF v Tab4 v =118

SIMD-ifying the V-Ray code

e |Initial idea for each stage: work in a branch
o Start by modifying the base raycasting classes (i.e. class Ray, TraceRay, IntersectionData);
o Make sure we get compiler errors between incompatible classes;
m Convert explicitly from/between non-SIMD classes as needed;
m Tryto keep all intermediate calculations SIMD-ified;
o Resolve all compiler errors;
o Merge the branch into the master.

e Problem:
o The master branch changes daily;
o Keeping the branch in sync with the master is exhausting.
o Some projects (like Phoenix FD) need to compile both against V-Ray 3.x and V-Ray Next
SDK.

SIMD-ifying the V-Ray code

e Solution:
o Define a new type that can map to either a non-SIMD type, or a SIMD type with an #ifdef
o Provide explicit conversion functions between types (no implicit type conversions!)
o Work in short branches:
Change the #ifdef to the SIMD type
Fix all compilation errors in a given portion of the code (a library, or a bunch of .cpp files)
Change the #ifdef back to the non-SIMD type
Make sure things still compile
Merge into the master
Repeat until an executable product builds with the SIMD version so that it can be tested
m Complete the changes for the rest of the products
o The final switch is just changing a define

158
151
152
153
158
155
156
157
158
159

161

7/ Define the vector type to use when shading; will eventually be replaced
// with just one or the other once everything is converted

#if 1

typedef simd::Vector3f Shadevec;

typedef simd: :Transfora3xaf ShadeTransform;

typedef sind: :Matrix3x3f ShadeMatrix;

FORCEINLINE ShadeVec toshadevec(const Vector &v) { return simd::Vectorsf(v); }

FORCEINLINE ShadeVec toshadeVec(const simd::vector3f &) { return v; }

FORCEINLINE ShadeVec toShadeVec(const TracePoint &) { return simd::Vector3f(v.x, v.y, v.z); }
FORCETNLINE ShadeMatrix toShadeMatrix(const Matrix &) { return simd::Matrix3x3f(n); }
FORCEINLINE ShadeMatrix toShadeMatrix(const simd::Matrix3x3f &m) { return m; }

FORCEINLINE ShadeTransform toShadeTransform(const Transform &s) { return simd: :Transforssxaf(m); }
FORCEINLINE onst simd: - &) { return =5 }
FORCEINLINE ShadeTransform onst &n) {

B simd: :Transform3xaf res;

! res.m[e].set(n.u[e]);

| res.n[1].set(n.m[1]);

i res.n[2].set(n.m[2]);

res.offs.set((float) m.offs.x, (float) m.offs.y, (float) m.offs.2);
return res;

FORCEINLINE Vector tovector(const Shadevec &v) { return v.tavector(); }

FORCEINLINE simd: :Vector3f tavector3f(const Shadevec &v) { return v; }

FORCEINLINE simd: :Vector3f tovector3f(const TracePoint &) { return simd::Vector3f(v.X, v.y, v.z); }
FORCEINLINE Color toCalor(const Shadevec &) { return Color(v.x(), v.y(), v.z()); }

FORCEINLINE ‘orm toTr ade’ &tm) { return tm.toTransform(); }
| FORCEINLINE -onst &) {

' TraceTransform res;

res.m=tm.m.toMatrix();

res.offs=TracePoint(tn.offs.x(), tm.offs.y(), tn.offs.z());

I return res;

FORCEINLINE Matrix ‘toMatrix(const ShadeMatrix &) { return m.toMatrix(); }

#define SHADEVEC_IS VECTOR3F

#else

pedef Vector ShadeVec;
typedet Transform ShadeTransform;
typedef Matrix ShadeMatrix;

FORCEINLINE Shadevec toshadevec(const Vector &v) { return v; }
FORCEINLINE ShadeVec toshadeVec(const simd::Vectar3f &v) { return v.tovector(); }
FORCEINLINE Shadevec toshadevec(const TracePoint &v) { return v.toVector(); }

FORCEINLINE ShadeMatrix toShadeMatrix(const Matrix &m) { return m; }

FORCEINLINE ix(const sind: &m) { return Matrix(m[e].tovector(), m[1].toVectar(), m[2].tovector()); }
FORCEINLINE {const &m) { return m; }

FORCEIMLINE ShadeTransform -ansform(const sind: :Tr &) { return Transform(Matrix(m.m[@].tovector(), m.m[1].tovector(),
FORCEINLINE (const &m) {

i Transform res;

i res.m[e]-m.m[8];

i res.m[1]=m.m[1];

i res.m[2]-m.m[2];

I res.offs=m.offs.tavector();
return res;

FORCEINLINE Vector tovector(const ShadeVec &v) { return v; }

FORCEINLINE Simd: :Vector3f tovector3f(const Shadevec &v) { return simd::Vector3f(v); }

FORCEINLINE simd: ‘Vector3f toVector3f(const TracePoint &v) { return simd::Vector3f(v.x, v.y, v.z); }
FORCEINLINE Color toColor(const Shadevec &v) { return Color(v.x, v.y, v.z); }

FORCEINLINE w(const &tm) { return tm; }

FORCEINLINE TraceTransform toTraceTransform(const ShadeTransform &tm) { return TraceTransform(tm); }
FORCEINLINE Matrix toMatrix(const Shadematrix &m) { return m; }

‘define SHADEVEC IS VECTOR

#endif

m.m[2].tovector()), m.offs.tavector()); }

SIMD-ifying the V-Ray code

L E— Fix iSsues pusmmme REEE Emmmmme FiX iSSues
/ SIMD types non-SIMD types \

EEG

From: |10/ 6/2005 w| To: | 5/14/2018 w2 Author Email

Message Author Date Commit Date
build/27733 | VMAX-6314 SIMD'ify RayParams and RayResult Vladimir Koylazov 10/3/2017 9:57:22 AM 10/3/2017 9:57:22 AM
Revert ShadeVec to Vector and make sure things compile. Viadimir Koylazov 10/3/2017 9:52:11 AM 10/3/2017 9:52:11 AM
Fixed vrayenvironmentfog. Vladimir Koylazov)/3/2017 9:51:12 AM 10/3/2017 9:51:12 AM
Fixed vraydomecamera. Vladimir Koylazov J :31: 10/3/2017 9:31:04 AM
Fixed vraydistancetex. Vladimir Koylazov / :27: 10/3/2017 9:27:29 AM
Fix vraycolor2bump. Vladimir Koylazov / :25: 10/3/2017 9:25:51 AM
More dlipper. Vladimir Koylazov / :22: 10/3/2017 9:22:41 AM
Fix vrayclipper. Vladimir Koylazov
Fixed vraycarpaintmtl, Vladimir Koylazov
Fixed vraybumpmti, Viadimir Koyl s /
build/27731 [VMAX-6314 SIMD'fy RayParams and RayResult Viadimir Koylazov 1 i51: 10/3/2017 12:51:56 Al
Revert ShadeVec to Vector and make sure things still compile. Viadimir Koylazov /3/: 10/3/2017 12:50:21 Al
PHI-3098 : Unify the Phoenix SDK base dasses between 3ds Max and Maya: Svetlin Nikolov)/ 10/3/2017 12:22:50 Al
Fix the Maya sphere project too. Vladimir Koylazov 7 /2017 12:19:57 Al
Fix maya_plane example. Vladimir Koylazov / : 10/3/2017 12:17:48 Al
Fix the ASGVis TexNoise. Vladimir Koylazov - 10/3/2017 12:09:30 Al
VMAX-6294 Add render with V-Ray Cloud button to the toolbar Alexander Kazandzhiev 10/3/2017 12:07:12 A
Fix RTOpenCL/RTCUDA. Viadimir Koylazov)/ 10/3/2017 12:05:59 Al
Fixed TexDistance. ladimir Koylazov)/ 10/2/2017 11:57:12PF
Fix BROFScanned (again). Viadimir Koylazov /
VMAX-6314 SIMD'ify RayParams and RayResult Viadimir Koylazov

5 PHI-3098 : Unify the Phoenix SDK base dlasses between 3ds Max and Maya: Svetiin Nikolov)

D VMAX-6314 SIMD'ify RayParams and RayResult Viadimir Koylazov Jj 10/2/2017 10:46:42 P}

)

LSOO SS &

Fix a few more compile errors for V-Ray 3.x Viadinir Koylazov 10/2/2017 10:24:15 P
Sync with master Viadimir Koylazov / 10/2/2017 10:03:43 P
PHI-3098 : Unify the Phoenix SDK base dasses between 3ds Max and Maya: Svetlin Nikolov / 10/2/2017 9:08:51PM
VGPU-2711 =resolve Baked textures are not rendered in nightlies (smd changes) Blagovest Taskov 10/2/2017 9:04:52PM
fix a crash caused by numTimeIndices=0. Deyan Spirov / :43: 10/2/2017 8:43:11PM
VMAX-5343 MDL assets are not transferred to DR slaves Georgi Totev
VCORE-1528 #resolve Investigate differences with vMaterials\Design Plastic\Transparent.mdl Georgi Totev
VMAX-6314 SIMD'ify RayParams and RayResult Viadimir Koylazov 10/2/2017 7:42:42PM
B R v g SRRt S P Revert ShadeVec to Vector and make sure things compile. Vladimir Koylazov / 140: 10/2/2017 7:40:42 PM
Don't denoise channels from the denoise button in Max Radoslav Platikanov /22017 7:40: 10/2/2017 7:40:31PM
Fixed vraybptracer. Viadimir Koylazov J 10/2/2017 7:32:20 PM
VMAYA-6378 resolve IPR crashes when moving the camera and rendering in DR Alexander Despotov : 10/2/2017 6:43:41PM
VCORE-1485 Translate Embree unit-tests to cgrepo cmake unit-tests Deyan Hadzhiev 12 : 10/2/2017 6:37:21PM
VMAYA-6944 Zresolve Update maya DR to use DR version 5. Alexander Despotov / 10/2/2017 6:36:07PM
+1%) master sync Alexander Despotov / 234 10/2/2017 6:34:42 PM
origin/dev /viadinir koylazov/shadevec_std20] More stupid bugs... Viadimi Koylazov] 10/2/2017 6:08:56 PM
Fix vrayblinnmt! Viadimir Koylazov] :08: 017 6:08:12PM
Fixed VRayALMH. Viadimir Koylazov] 143: 017 5:48:31PM
Fixed VRayABCMY. Viadimir Koylazov / 148: 10/2/2017 5:48: 10 PM
VGPU-2711 #resolve Baked textures are not rendered in nightlies (simd changes) Blagovest Taskov 134: 017 5:41:23PM
More fixes. Viadinir Koylazov / :32: 10/2/2017 5:32:43 PM
Fixed HairVrPrims. Viadimir Koylazov] 10/2/2017 5:30:52PM
VCORE-1507 =resolve Fix crashes because ricDeleteDevice is called multiple time Teodor Petrov / 0/2/2017 5:28:19 PM
Code review fixes Alexander Despotov / 2AM 10/2/2017 5:13:53PM
Fixed more compilation errors for V-Ray 3. Viadimir Koylazov 10/2/20175:09:12PM 10/2/2017 5:09:12PM
Halfway through HairVrPrims. Viadinir Koylazov 10/2/20175:05:37PM 10/2/2017 5:05:37PM
Fix compile errors for V-Ray 3.x Viadinir Koylazov :38: 10/2/2017 4:38: 11PM
[VD' yResut Viadimir Koyiazoy, 10/2/3017 4:33:08 BV
L v e SR Y Revert ShadeVec to Vector and make sure things still compile. Viadimir Koylazov /2/2017 4:30:56 PM 017 4:30:56 PM
PHI-3021 resolve : Option to allow only expansion of the adaptive grid, but disable shrinking: Svetiin Nikolov 017 4:27:45PM 10/2/2017 4:28:12PM
vrayformaya compiles with ShadeVec as Vector3f Viadinir Koylazov /2/2017 4:27:45PM 10/2/2017 4:27:45PM

SOOI

e e
®ee

PSS LSLOESSSSS

SR

EL=1

>

Path Extension Status Lines added _Lines removed

Showing 90512 revision(s), from revision c1c47b7 to revision cf6e6ff - 7 revision(s) selected, 0 file(s) selected

[] All Branches

Refresh Statistics WakBehaviour |v || vew [v

Final switch to SIMD type

master

From: |10/ 6/2005

v

To:

5/14/2018 v | o2

Author Email

ML JI 4

Graph

Message

More ShadeCol in the main interfaces.

Define a new ShadeCol type and use it in the main V-Ray classes for shading and lighting.

Author

Vladimir Koylazov
Vladimir Koylazov

Date

10/4/2017 10:24:57 AM
10/4/2017 10:13:31 AM

Commit Date

10/4/2017 10:24:57 AM
10/4/2017 10:13:31 AM

Vladimir Koylazov

\
1

build/27736 | PHI-3120 #resoly

10742017 9:20:52 AM

10/4/2017 8:21:15 AM

Crash when using the Ocean preset with the Defscanline Phoenix without V-Ray instal... Svetlin Nikolov

origin/dev/deyan.hadzhiev/maya/fix_duplication | VMAYA-6983 Remove duplication of code where cached param value i... Deyan Hadzhiev

@ -D iaﬁ VStd in progress

=resolve No velocity on proxies converted from Houdini with applied VRay subdivisions on them

@R vmava-6s35
2 S

A

Kamen Lilov
Deyan Spirov

10/4/2017 12:42:44 AM
10/3/20179:13:19 PM
10/3/2017 7:07:54 PM
10/3/2017 7:24:27 PM

1A I2/MN1T £.A0. 4C DN

10/4/2017 12:46:22 AM
10/3/2017 9:13:19 PM
10/3/2017 7:33:24PM
10/3/2017 7:24:27PM

40 12/M04T €00, 4C A

Mechka strah, mene ne...

SHA-1: 261ced4b38778294ab7a2092b83916291d291a362
* VMAX-6314 SIMD'ify RayParams and RayResult

ShadeVec is now Vector3f.

Path

Diff with parent 2: 60fa707
@Aura2_:'3dslv15xy'qunck_setups_max.cpp
vraysdk/samples/

Diff with parent 1: 9ad9d8b

_'ﬂ vray/vrayfincudefvraybase.h

ay_plugins/geometr

ﬂ vraysl/vray_geom_staticmesh/incude/geometrydasses.h

ray_geommeshfile/geom_mesh_file.cpp
ﬂvra-,'sdkfsampfes,.ra~,'_plugms,"geometr y/vray_geommeshfile/geom_mesh_file_meshinfo.h

Extension

Modified

Modified
Modified
Modified
Modified

Linesadded Lines removed

Showing 90512 revision(s), from revision c1c47b7 to revision cfée6ff - 1 revision(s) selected, 0 file(s) selected; line: 47(+) 21(-) files: modified = 5 added = 0 deleted = 0 replaced =0

[all Branches
Refresh

Statistics

Walk Behaviour | view |w

SIMD-ifying the V-Ray code

e \Worked surprisingly well
o It helped a lot that the V-Ray code base is modular
o Of course, some minor bugs did occur and they were later found and fixed during testing

e Forthe three stages, three new types were introduced:
o Float3 can map to either Vector or simd::Vector3f
m Used in intersection libraries
o ShadeVec can map to either Vector or simd::Vector3f
m Used in V-Ray as part of the ray context
o ShadeCol can map to either Color or simd::Color3f
m Used in V-Ray as part of the ray context

e We had to go through the entire V-Ray code base

o Multiple times (for each stage)
o Practically every single file was touched in some way

SIMD-ifying the V-Ray code

e The result
o Up to 25% faster rendering
o A compatibility header for compiling shaders both for V-Ray 3.x and V-Ray Next

e Some calculations were not SIMD-ified
o Diminishing returns

e \Work took about 2 months

Adaptlve dome Ilght

S

\1' w i //7\ z. 7

. ' —————— ~ — -
l‘ A NS T {
il
) 4 i« ’\ i
/N \
1) -
wy . — 3
.
S‘ql-ﬂ/

Adaptive dome light challenges

e A continuation of the work we did on the adaptive lights to make V-Ray
smarter
Basic idea is fairly simple - use the light cache to figure out which parts of the dome light are

important to which parts of the scene
o Use this information to improve sampling during the actual rendering
o Atalk about it at Siggraph 2018
e Requires good adaptive image sampling that can handle the uneven light

sampling

(@)

Adaptive dome light challenges

e Asen Atanasov did some initial experiments
o Unfortunately the performance was not as we expected
o After a month or so, we were ready to give up

The importance of code comments - actual text

= int-getLight (float-&x, -float: &prob) -const - {

const int numLights=lightInfos.count () ;

2 int lightIndex;

// Use-binary- search-to-locate the-light:source-that corresponds-to
if (x<=lightInfos[0] .getValue()) lightIndex=0;

else lightIndex=Min (numLights-1, binarySearch (x, numLights)+1) ;

// Compute - the -probability-for-selecting-the-light-source.
prob=getLightProb (lightIndex) ;
return-lightIndex;

What the comment should have said...

= int-getLight (float:&x, -float-&invProb) -const - {

const int -numLights=lightInfos.count () ;

int-lightIndex;

// Use-binary- search-to-locate the-light-source: that corresponds-to-x
if (x<=lightInfos[0].getValue()) lightIndex=0;

else lightIndex=Min (numLights-1, binarySearch (x, numLights)+1) :;

// - Compute - the- inverse -probability:for-selecting-the-light- source.
invProb=getInvLightProb (lightIndex) ;
return - lightIndex;

Adaptive dome light

e Initial tests very promising
o Between 1.5-7x speed improvements

e Released in beta 1, all was fine...
e ...until some users reported blocky artifacts

User reports for blocky artifacts

Adaptive dome light

e Debugged the user scene to see what the problem was...

e ..and after | realized what it was, | was totally terrified.
o The whole approach could turn out to be pointless or with little practical use

Multiple importance sampling

e Veach’95, “Optimally combining sampling techniques for Monte Carlo
rendering”

e The illumination from area light sources is computed with two different
sampling strategies

o Based on the light source
o Based on the BRDF

e \When added together, they produce the correct result
o Like the pieces of a puzzle

e The adaptive dome light changes the balance between two strategies for

different regions of the image
o Eventually leads to less noise and faster renders

Non-adaptive dome Adaptive dome

Light
sampling

+

Light ; .

sampling BRDF | i BRDF
sampling sampling

Final result

6m 49s 3m 57s

Multiple importance sampling - breaking the balance

e If the balance between light sampling and BRDF sampling is broken we get
artifacts

e The balance can be broken for different reasons:
o Different highlight and reflection glossiness

Different Gl and shadow visibility

Different reflections and shadow visibility

Object doesn’t receive shadows

Light doesn’t cast shadows

o Light has include/exclude list (light/shadow linking)

e This wasn’t much of an issue with non-adaptive dome lights
o Result was still not “accurate”, but was acceptable (no artifacts)

O O O O

Multiple importance sampling - breaking the balance

: ‘v‘

Light

Object does not cast
shadows, but is visible to
reflections

Multiple importance sampling - breaking the balance

e Breaking the balance is not physically accurate
e But there are still very practical situations where it is extremely useful

Dome light only

e Lighting is ok
e Background is not what
we want though

Environment that we actually want to see

Cylinder (or planes) for the environment

[+] [Orthographic] [User Defined] [Edged Faces]

e Usually a VRayMtl with
black diffuse and only
self-illumination

Regular geometry

~ e Lighting is wrong - dome
light is blocked

e Background is ok

e Reflections are ok

Visible to camera rays only

=,
\t‘

e Lighting is ok
e Background is ok
e Reflections are strange

[

\/isible In reflections, cast shadows off

e ‘ 7 e Lighting is ok
- A e Background is ok
e Reflections are ok

Rendering Control

Visibility: 1.0 4
¥ Renderable
v Inherit Visibility
v Visible to Camera
v Visible to Reflection/Refraction
v Receive Shadows

Cast Shadows

v Apply Atmospherics

' Render Occluded Objects

G-Buffer
Object ID: 0 s

Dome light only

e Lighting is ok
e Background is not what
we want though

Back to the problem

e (bjects with inconsistent visibility cause problems
o Also for Corona’s new light solver

e How to fix this?
o Warn the user and do nothing?
o Turn off the adaptive dome light?

o Abandon the approach altogether?
o Do something else???

e \What do users actually expect to happen?

e The problem with devising new methods to solve problems:
o Nobody can help you

Solutions

e For beta 3, we implemented a kind of a solution
o Detect rays going through such inconsistent objects and modify the math to remove the
artifacts by using not so optimal MIS weights
o Worked, but hard to implement on the GPU
o Caused occasional fireflies
o Non-optimal samping==slower
e The final solution materialized last Friday when | was looking at the GPU code
o Basically replace the full specular contribution of the light with that of the environment
geometry
o Requires that the renderer can sample diffuse and specular separately

User reports for blocky artifacts

Fixed artifacts

Just dome light

JJJJJJJJJJJJ

Non-adaptive dome light, 1h 50m 32s Adaptive dome light, 42m 14s

Mini-research

e When there’s a problem, it's useful to see how/if others have solved it
o Not exactly Siggraph paper material

e How do different renderers deal with objects with inconsistent visibility?
e Turns out that there are two ways to handle direct illumination with MIS

o PBRT-style
o Mixed style

e This is a fundamental difference between renderers
o Even if they are all in “brute force” mode and produce otherwise identical results

AT Lk BT E L P

“Physica‘lly Based R__emnde

o,
e In photorealistic rendering,

when people say “by the

book”...
o ..this is the book.

PBRT-style direct illumination

e PBRT-style

o When evaluating lights, generate rays both from the lights and the BRDF
m Trace all of them as shadow rays and then combine the contributions with MIS for the full direct
light contribution
o Then trace additional BRDF rays for diffuse Gl (color bleeding) and reflections/refractions
m Such rays are not affected by light sources

e Light sources may not be a part of the normal scene at all (i.e. always invisible)
e Objects with inconsistent visibility do not cause issues
o However results might still be different from artists’ expectation

e More rays might be traced and the renderer might be slower

o For each light source, we need to generate and trace rays for the light and the BRDF
o Then again we need to generate rays for the BRDF to trace Gl, reflections and refractions
m The BRDF is essentially sampled multiple times

PBRT-style direct illumination

Light

For each light
o Generate shadow rays from
the light
o Generate shadow rays from
the BRDF
e Generate rays for color
bleeding/reflections/refractions

Mixed style direct illumination

e Mixed style
o When evaluating lights, generate rays only for the lights and trace them as shadow rays
m Only the light part of the MIS contribution of is computed
o Then trace additional rays for diffuse Gl and reflections/refractions
m If such rays happen to intersect a light source, its BRDF contribution of direct lighting is
computed and added to the result

e More care must be taken to ensure objects with inconsistent visibility do not
cause issues
e Typically less rays need to be traced to produce the same result

Mixed style direct illumination

Light

e For each light
o Generate shadow rays from
the light
e Generate rays for color
bleeding/reflections/refractions

Examples

e PBRT-style renderers
o Arnold
o RenderMan
o PBRT
e Mixed style
o V-Ray
o Corona

Comparing renderers

Questions?

