
Developing V-Ray Next
Vladimir Koylazov
Total Chaos 2018



Overview
● Three stories of heroism, despair and (mostly) happy endings:

○ Wrapping up the Embree integration and update to Embree 2.13;
○ SIMD-ifying the V-Ray code;
○ Adaptive dome light challenges.



Embree integration
● Originally we had our own intersection code:

○ Static (non-motion-blurred geometry)
○ Motion-blurred geometry
○ Instances/proxies
○ Hair
○ Particles
○ Displacement

● Embree was introduced gradually for different types of intersections
○ Started with V-Ray 3.0 for static and single-segment motion blur
○ Hair, instances, proxies added over the various 3.x releases

● Embree is generally 2x faster than our intersectors
○ Translates to ~25% lower render times



Embree integration in V-Ray Next
● Updated to Embree 2.13

○ Mostly because of some additional hair features
○ Quad intersections seemed something worth exploring

● Added multisegmented motion blur support
● Will work on reducing memory usage over the V-Ray Next dev cycle



Custom Embree modifications
● We have a few custom Embree modifications

○ Skip tags;
○ Fat hair intersectors;
○ Custom geometry layout for conserving memory

● We had to keep our changes separate from the main Embree code



Embree fat hair intersector

Our fat hair 
intersector

Original Embree 
hair intersector



Embree fat hair intersector

Fat intersectorOriginal intersector



Embree 2.13 - porting our custom changes
● When we compared the code for Embree 2.3 and Embree 2.13…

○ …the code was totally different and refactored;
○ It was not immediately clear how to port our modifications to the new Embree code base

● Martin Krastev spent a whole year rebasing our changes on top of the 
Embree 2.13 code…

○ ...commit by commit
○ Fixing any problems along the way.

● Unit tests were extremely important



Embree 2.13



SIMD-ifying the V-Ray code

● SSE2 instructions
○ Provide efficient implementation of 4-component vector, color and matrix operations
○ In limited tests showed measurable performance improvements

● Not available in 2000 when the V-Ray math library was first developed
● Vectors, colors and matrices are used throughout the V-Ray code

○ Some of the code used double-precision calculations as well which are (much) slower

● How can this change be made?
○ In a reasonable time frame;
○ Without breaking anything.

● Staged implementation:
○ First for the intersection code of rays with geometry primitives;
○ Then for some vector shading elements (surface normals, intersection points);
○ Finally, for colors and all members of the ray state



V-Ray code basic structure

Utility libraries

V-Ray core

V-Ray for 3ds Max

Plugins for V-Ray for 3ds Max

V-Ray Standalone

Plugins for V-Ray Standalone

V-Ray for Maya...



SIMD-ifying the V-Ray code
● The goal was clear…

○ ...but where to start?

● There are thousands of source files and vectors/colors/matrices are used in 
thousands of places

○ ~3500 .cpp files, ~5500 .h and .hpp files
○ Together vector types occur on 46679 lines in 2787 files

● Not all occurrences need to be changed
○ Storage of vector/color data in large arrays in memory needs to remain as non-SIMD types

■ For RAM usage reasons
■ For alignment reasons

○ Some calculations are not performance-critical



“Show me your [code] and conceal your [data 
structures], and I shall continue to be mystified. 
Show me your [data structures], and I won't 
usually need your [code]; it'll be obvious.”

- After Fred Brooks,
“The Mythical Man-Month”



SIMD-ifying the V-Ray code
● Start by modifying the key data structures used in the code

○ Class Ray and TraceRay
○ Class IntersectionData
○ Class VRayContext

● First do vector math, then do colors
● Make sure that SIMD classes have the same interface as non-SIMD classes

○ So that in most cases the change would be simply replacing the type of a variable/function 
argument





SIMD-ifying the V-Ray code
● Initial idea for each stage: work in a branch

○ Start by modifying the base raycasting classes (i.e. class Ray, TraceRay, IntersectionData);
○ Make sure we get compiler errors between incompatible classes;

■ Convert explicitly from/between non-SIMD classes as needed;
■ Try to keep all intermediate calculations SIMD-ified;

○ Resolve all compiler errors;
○ Merge the branch into the master.

● Problem:
○ The master branch changes daily;
○ Keeping the branch in sync with the master is exhausting.
○ Some projects (like Phoenix FD) need to compile both against V-Ray 3.x and V-Ray Next 

SDK.



SIMD-ifying the V-Ray code
● Solution:

○ Define a new type that can map to either a non-SIMD type, or a SIMD type with an #ifdef
○ Provide explicit conversion functions between types (no implicit type conversions!)
○ Work in short branches:

■ Change the #ifdef to the SIMD type
■ Fix all compilation errors in a given portion of the code (a library, or a bunch of .cpp files)
■ Change the #ifdef back to the non-SIMD type
■ Make sure things still compile
■ Merge into the master
■ Repeat until an executable product builds with the SIMD version so that it can be tested
■ Complete the changes for the rest of the products

○ The final switch is just changing a define





SIMD-ifying the V-Ray code

master

Switch to 
SIMD types Fix issues Revert to 

non-SIMD types Fix issues





Final switch to SIMD type



SIMD-ifying the V-Ray code
● Worked surprisingly well

○ It helped a lot that the V-Ray code base is modular
○ Of course, some minor bugs did occur and they were later found and fixed during testing

● For the three stages, three new types were introduced:
○ Float3 can map to either Vector or simd::Vector3f

■ Used in intersection libraries
○ ShadeVec can map to either Vector or simd::Vector3f

■ Used in V-Ray as part of the ray context
○ ShadeCol can map to either Color or simd::Color3f

■ Used in V-Ray as part of the ray context

● We had to go through the entire V-Ray code base
○ Multiple times (for each stage)
○ Practically every single file was touched in some way



SIMD-ifying the V-Ray code
● The result

○ Up to 25% faster rendering
○ A compatibility header for compiling shaders both for V-Ray 3.x and V-Ray Next 

● Some calculations were not SIMD-ified
○ Diminishing returns

● Work took about 2 months



Adaptive dome light



Adaptive dome light challenges
● A continuation of the work we did on the adaptive lights to make V-Ray 

smarter
○ Basic idea is fairly simple - use the light cache to figure out which parts of the dome light are 

important to which parts of the scene
○ Use this information to improve sampling during the actual rendering
○ A talk about it at Siggraph 2018

● Requires good adaptive image sampling that can handle the uneven light 
sampling



Fixed sampling
Adaptive dome light
Uneven noise



Fixed sampling
Adaptive dome light
Uneven noise



Adaptive image sampler
Adaptive dome light
Even noise



Adaptive image sampler
Adaptive dome light
Even noise



Adaptive dome light challenges
● Asen Atanasov did some initial experiments

○ Unfortunately the performance was not as we expected
○ After a month or so, we were ready to give up



The importance of code comments - actual text



What the comment should have said...



Adaptive dome light
● Initial tests very promising

○ Between 1.5-7x speed improvements

● Released in beta 1, all was fine…
● ...until some users reported blocky artifacts



User reports for blocky artifacts



Adaptive dome light
● Debugged the user scene to see what the problem was...
● ...and after I realized what it was, I was totally terrified.

○ The whole approach could turn out to be pointless or with little practical use



Multiple importance sampling
● Veach’95, “Optimally combining sampling techniques for Monte Carlo 

rendering”
● The illumination from area light sources is computed with two different 

sampling strategies
○ Based on the light source
○ Based on the BRDF

● When added together, they produce the correct result
○ Like the pieces of a puzzle

● The adaptive dome light changes the balance between two strategies for 
different regions of the image

○ Eventually leads to less noise and faster renders



Light 
sampling BRDF 

sampling

Light 
sampling

BRDF 
sampling

Final result

+

=

Non-adaptive dome Adaptive dome

6m 49s 3m 57s



Multiple importance sampling - breaking the balance
● If the balance between light sampling and BRDF sampling is broken we get 

artifacts
● The balance can be broken for different reasons:

○ Different highlight and reflection glossiness
○ Different GI and shadow visibility
○ Different reflections and shadow visibility
○ Object doesn’t receive shadows
○ Light doesn’t cast shadows
○ Light has include/exclude list (light/shadow linking)

● This wasn’t much of an issue with non-adaptive dome lights
○ Result was still not “accurate”, but was acceptable (no artifacts)



Multiple importance sampling - breaking the balance

Light

Shadow ray

Reflectio
n ra

y

Camera ray
Object does not cast 
shadows, but is visible to 
reflections



Multiple importance sampling - breaking the balance
● Breaking the balance is not physically accurate
● But there are still very practical situations where it is extremely useful



Dome light only
● Lighting is ok
● Background is not what 

we want though



Environment that we actually want to see



Cylinder (or planes) for the environment
● Usually a VRayMtl with 

black diffuse and only 
self-illumination



Regular geometry
● Lighting is wrong - dome 

light is blocked
● Background is ok
● Reflections are ok



Visible to camera rays only
● Lighting is ok
● Background is ok
● Reflections are strange



Visible in reflections, cast shadows off
● Lighting is ok
● Background is ok
● Reflections are ok



Dome light only
● Lighting is ok
● Background is not what 

we want though



Back to the problem
● Objects with inconsistent visibility cause problems

○ Also for Corona’s new light solver

● How to fix this?
○ Warn the user and do nothing?
○ Turn off the adaptive dome light?
○ Abandon the approach altogether?
○ Do something else???

● What do users actually expect to happen?
● The problem with devising new methods to solve problems:

○ Nobody can help you



Solutions
● For beta 3, we implemented a kind of a solution

○ Detect rays going through such inconsistent objects and modify the math to remove the 
artifacts by using not so optimal MIS weights

○ Worked, but hard to implement on the GPU
○ Caused occasional fireflies
○ Non-optimal samping==slower

● The final solution materialized last Friday when I was looking at the GPU code
○ Basically replace the full specular contribution of the light with that of the environment 

geometry
○ Requires that the renderer can sample diffuse and specular separately



User reports for blocky artifacts



Fixed artifacts



Just dome light



Non-adaptive dome light, 1h 50m 32s Adaptive dome light, 42m 14s



Mini-research
● When there’s a problem, it’s useful to see how/if others have solved it

○ Not exactly Siggraph paper material

● How do different renderers deal with objects with inconsistent visibility?
● Turns out that there are two ways to handle direct illumination with MIS

○ PBRT-style
○ Mixed style

● This is a fundamental difference between renderers
○ Even if they are all in “brute force” mode and produce otherwise identical results



“Physically Based Rendering” book
● In photorealistic rendering, 

when people say “by the 
book”...

○ ...this is the book.



PBRT-style direct illumination
● PBRT-style

○ When evaluating lights, generate rays both from the lights and the BRDF
■ Trace all of them as shadow rays and then combine the contributions with MIS for the full direct 

light contribution
○ Then trace additional BRDF rays for diffuse GI (color bleeding) and reflections/refractions

■ Such rays are not affected by light sources

● Light sources may not be a part of the normal scene at all (i.e. always invisible)
● Objects with inconsistent visibility do not cause issues

○ However results might still be different from artists’ expectation

● More rays might be traced and the renderer might be slower
○ For each light source, we need to generate and trace rays for the light and the BRDF
○ Then again we need to generate rays for the BRDF to trace GI, reflections and refractions

■ The BRDF is essentially sampled multiple times



PBRT-style direct illumination
Light

Shadow ra
y g

enerated by th
e lig

ht

Refl
ec

tio
n r

ay
 ge

ne
ra

ted
 by

 th
e B

RDF

Camera ray Shadow ray generated by the BRDF

● For each light
○ Generate shadow rays from 

the light
○ Generate shadow rays from 

the BRDF
● Generate rays for color 

bleeding/reflections/refractions



Mixed style direct illumination
● Mixed style

○ When evaluating lights, generate rays only for the lights and trace them as shadow rays
■ Only the light part of the MIS contribution of is computed

○ Then trace additional rays for diffuse GI and reflections/refractions
■ If such rays happen to intersect a light source, its BRDF contribution of direct lighting is 

computed and added to the result

● More care must be taken to ensure objects with inconsistent visibility do not 
cause issues

● Typically less rays need to be traced to produce the same result



Mixed style direct illumination
Light

Shadow ra
y g

enerated by th
e lig

ht

Refl
ec

tio
n r

ay
 ge

ne
ra

ted
 by

 th
e B

RDF

Camera ray

● For each light
○ Generate shadow rays from 

the light
● Generate rays for color 

bleeding/reflections/refractions



Examples
● PBRT-style renderers

○ Arnold
○ RenderMan
○ PBRT

● Mixed style
○ V-Ray
○ Corona



Comparing renderers



Questions?


